

Developing Fundamental AI Programming Skills for Drug Discovery

This guide contains the content for Jupyter notebooks and portal access at TACC
and Python fundamentals and foundations for AI. The objectives of these
sections are to introduce the use of Jupyter notebooks at TACC, and to
introduce the most fundamental Python skills that are necessary
for domain scientists to be successful in AI coding projects.

Content:

	Onboarding to TACC

	Jupyter Notebooks

	Linux Refresher

	Python Essentials

	NumPy, SciPy, and Matplotlib Primer

Additional Resources

	Python for Machine Learning: https://learn.tacc.utexas.edu/mod/page/view.php?id=62

	AI for Everyone: https://www.coursera.org/learn/ai-for-everyone/home/welcome

Onboarding to TACC

The Texas Advanced Computing Center (TACC) at UT Austin designs and operates
some of the world’s most powerful computing resources. The center’s mission is
to enable discoveries that advance science and society through the application
of advanced computing technologies.

We will be using cloud resources at TACC as our development environment. We will
access the cloud resources via our SSH clients and TACC account credentials, as
well as through a visualization portal.

Attention

Everyone please apply for a TACC account now using
this link [https://portal.tacc.utexas.edu/web/tup/account-request]. If you
already have a TACC account, you can just use that. Send your TACC username
to wallen [at] tacc [dot] utexas [dot] edu as soon as possible.

About TACC

TACC is a Research Center, part of UT Austin, and located at the JJ Pickle
Research Campus.

[image: ../_images/tacc_map.png]
A short 7.7 mile walk from main campus!

[image: ../_images/tacc_building.png]
One of two TACC buildings located at JJ Pickle.

[image: ../_images/frontera_racks.png]
A tall guy standing among taller Frontera racks.

TACC at a Glance

[image: ../_images/tacc_at_a_glance_1.png]

[image: ../_images/tacc_at_a_glance_2.png]

[image: ../_images/tacc_at_a_glance_3.png]

Other TACC Services

	Portals and gateways

	Web service APIs

	Rich software stacks

	Consulting

	Curation and analysis

	Code optimization

	Training and outreach

	=> Learn more [https://www.tacc.utexas.edu/]

[image: ../_images/tacc_portals.png]
Snapshot of a few of TACC’s portal projects.

TACC Partnerships

	NSF: Leadership Class Computing Facility (LCCF)

	NSF: Extreme Science and Engineering Discovery Environment (XSEDE)

	UT Research Cyberinfrastructure (UTRC)

	TX Lonestar Education and Research Network (LEARN)

	Industry, STAR Program [https://www.tacc.utexas.edu/partnerships/star/partners]

	International, The International Collaboratory for Emerging Technologies

	=> Learn more [https://www.tacc.utexas.edu/]

Attention

Did you already e-mail me your TACC username?

Before We Continue

Using your SSH client, please try to log in to Longhorn. Make sure to use your own
username in place of username:

[local]$ ssh username@longhorn.tacc.utexas.edu
To access the system:

1) If not using ssh-keys, please enter your TACC password at the password prompt
2) At the TACC Token prompt, enter your 6-digit code followed by <return>.

Password:
TACC Token Code:
Last login: Mon Dec 6 15:36:46 2021 from 192.168.64.11
--
 Welcome to the Longhorn Supercomputer
 Texas Advanced Computing Center, The University of Texas at Austin
--

 ** Unauthorized use/access is prohibited. **

If you log on to this computer system, you acknowledge your awareness
of and concurrence with the UT Austin Acceptable Use Policy. The
University will prosecute violators to the full extent of the law.

TACC Usage Policies:
http://www.tacc.utexas.edu/user-services/usage-policies/
__

Welcome to Longhorn, *please* read these important system notes:

--> Longhorn user documentation is available at:
 https://portal.tacc.utexas.edu/user-guides/longhorn

 |\ /|
 | ___________________________.-----.___________________________/ |
 '.__________________________ __________________________.'
 _ <_/| |_>
 | | ___ __ _ ___ | | _ _ ___ ____ __ _
 | | / _ \| \| |/ __) | | | |_| |/ _ \| .. \| \| | | | |
 | |___| (_) | \ \ | (_-- () | _ | (_) | '' /| \ \ |
 |_____|___/|_|__|___/ '---' |_| |_|___/|_|_\|_|__|

---------------------- Project balances for user username ---------------------
Name Avail SUs Expires	Name Avail SUs Expires
ASC21018 12000 2022-06-30	SD2E-Communit 5548 2021-12-31
TACC-SCI 221130 2025-06-30	TRA21002 2040 2021-12-31
------------------------- Disk quotas for user username -----------------------	
Disk Usage (GB) Limit %Used File Usage Limit %Used	
/work 436.5 1024.0 42.63 1445104 3000000 48.17	
/home 28.1 40.0 70.26 192235 512000 37.55	
/scratch 571.3 0.0 0.00 10273017 0 0.00	

login2.longhorn(1000)$ # success!

Also, please try to log in to this Vis Portal using your TACC username and password:

https://vis02.tacc.utexas.edu/

[image: ../_images/vis_portal.png]
Successful login.

Jupyter Notebooks

What are Jupyter Notebooks?

Jupyter Notebooks are a web-based, interactive computing tool for capturing the
whole computation process: developing, documenting, and executing code, as well
as communicating the results. They support interactive data science and scientific
computing across all programming languages, including Python.

How do Jupyter Notebooks Work?

An open notebook has exactly one interactive session connected to a kernel which
will execute code sent by the user and communicate back results. This kernel
remains active if the web browser window is closed, and reopening the same
notebook from the dashboard will reconnect the web application to the same kernel.
The kernel’s state, including imported libraries and declared variables, persists
between cells.

How do You Access Jupyter Notebooks?

	The Jupyter website [https://www.jupyter.org] allows you to download Jupyter
Notebook and/or try it in your browser.

	The TACC Analysis Portal [https://vis02.tacc.utexas.edu/] allows TACC users to run Jupyter
through your browser on Frontera, Longhorn, Maverick2, or Stampede2, so long
as you have an allocation on that system.

	The TACC DesignSafe Portal [https://www.designsafe-ci.org] allows anyone with
a TACC account to use Jupyter. (Log in, choose Workspace => Tools and Applications => Jupyter)

	TACC provides small, short lived Jupyter notebooks to anyone with a TACC account
via the TACC Cloud [https://beta.jupyter.tacc.cloud/].

	Public Jupyter notebooks are available through sites like
Google Colaboratory [https://research.google.com/colaboratory/].

	Service exist to share notebooks in a browser including Binder [https://mybinder.org/].

Interacting with Jupyter Notebooks

First, choose one of the methods above and start a new Jupyter Notebook. I will
be following method #2 - the TACC Analysis Portal. For this workshop, use the
following settings:

[image: ../_images/vis_portal_filled.png]

The original, and more common “tree” interface to Jupyter will display a file
browser (in this case to files in your Longhorn /home directory):

[image: ../_images/jupyter_overview_1.png]

New Python3 kernels and Terminals can be launched by clicking the “New” button
on the right side:

[image: ../_images/jupyter_overview_2.png]

Running kernels can be accessed through the “Running” tab on the top. By default,
the Jupyter Notebooks will be saved in your /home directory with a .ipynb
extension. (Re-opening the notebook will open all the cells, and restore the state
of the kernel - more on this later):

[image: ../_images/jupyter_overview_3.png]

The terminal is a standard, fully-functional terminal. Very useful for debugging
and interacting with files / directories. For example, you can easily wget a
data set or unzip a file:

[image: ../_images/jupyter_overview_4.png]

The Jupyter notebook consists of a toolbar (top) and an unlimited number of
cells (bottom):

[image: ../_images/jupyter_overview_5.png]

Cells can be either “code cells” or “markdown cells”. Code cells allow you to
enter and run code. Markdown cells use the markdown markup language to comment on
or narrate what is happening in the notebook:

[image: ../_images/jupyter_overview_6.png]

Miscellaneous Tips and Tricks

Shortcuts:

	Shift+Enter: run cell

	Ctrl+Enter: run cell in place

	Alt+Enter: run cell, insert below

	Esc / Enter: toggle between command and edit mode

Run a command within a Jupyter notebook (prefix with !):

In[]: ! pip list
In[]: ! pip install --user names

The file browser is not (by default) aware of your /work or /scratch directories
on Longhorn. The easiest thing to do is open up a terminal and make symbolic
links to your /work and /scratch directories in your /home directory

[longhorn]$ cd
[longhorn]$ pwd
/home/012345/username
[longhorn]$ ln -s $WORK WORK
[longhorn]$ ln -s $SCRATCH SCRATCH

Exercise

Make a copy of a previously-prepared demo notebook in your /home directory. Open
the notebook with Jupyter. Execute the cells within and think about why it is
organized the way it is. To copy the notebook:

[longhorn]$ cd # cd to /home directory
[longhorn]$ cp /scratch/03439/wallen/AI-Drug-Discovery/notebook_demo.ipynb .

Once you run each cell, save the notebook with a new name. Re-open the original
notebook as well as the new notebook. Does saving the notebook save the state of
the kernel as well?

Linux Refresher

After working through this material, attendees should be able to:

	Describe basic functions of essential Linux commands

	Use Linux commands to navigate a file system and manipulate files

	Transfer data to / from a remote Linux file system

	Edit files directly on a Linux system using a command line utility (e.g. vim,
nano, emacs)

Topics covered in this module include:

	Creating and navigating folders (pwd, ls, mkdir, cd, rmdir)

	Creating and manipulating files (touch, rm, mv, cp)

	Looking at the contents of files (cat, more, less, head, tail, grep)

	Network and file transfers (hostname, whoami, logout, ssh, scp, rsync)

	Text editing with vim (insert mode, normal mode, navigating, saving, quitting)

Log in to Longhorn

To log in to the Longhorn cluster [https://portal.tacc.utexas.edu/user-guides/longhorn],
follow the instructions for your operating system or ssh client below.

Mac / Linux

Open the application 'Terminal'
ssh username@longhorn.tacc.utexas.edu
(enter password)
(enter 6-digit token)

Windows

Open the application 'PuTTY'
enter Host Name: longhorn.tacc.utexas.edu
(click 'Open')
(enter username)
(enter password)
(enter 6-digit token)

If you can’t access Longhorn yet, a local or web-based Linux environment
will work for this guide. However, you will need to access Longhorn for
future materials.

Try this Linux environment in a browser [https://bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192].

Creating and Navigating Folders

On a Windows or Mac desktop, our present location determines what files and
folders we can access. I can “see” my present location visually with the help of
the graphic interface - I could be looking at my Desktop, or the contents of a
folder, for example. In a Linux command-line interface, we lack the same visual
queues to tell us what our location is. Instead, we use a command - pwd
(print working directory) - to tell us our present location. Try executing this
command in the terminal:

$ pwd
/home/03439/wallen

This home location on the Linux filesystem is unique for each user, and it is
roughly analogous to C:\Users\username on Windows, or /Users/username on Mac.

To see what files and folders are available at this location, use the ls
(list) command:

$ ls

I have no files or folders in my home directory yet, so I do not get a response.
We can create some folders using the mkdir (make directory) command. The
words ‘folder’ and ‘directory’ are interchangeable:

$ mkdir folder1
$ mkdir folder2
$ mkdir folder3

$ ls
folder1 folder2 folder3

Now we have some folders to work with. To “open” a folder, navigate into that
folder using the cd (change directory) command. This process is analogous to
double-clicking a folder on Windows or Mac:

$ pwd
/home/03439/wallen/
$ cd folder1
$ pwd
/home/03439/wallen/folder1

Now that we are inside folder1, make a few sub-folders:

$ mkdir subfolderA
$ mkdir subfolderB
$ mkdir subfolderC
$ ls
subfolderA subfolderB subfolderC

Use cd to Navigate into subfolderA, then use ls to list the
contents. What do you expect to see?

$ cd subfolderA
$ pwd
/home/03439/wallen/folder1/subfolderA
$ ls

There is nothing there because we have not made anything yet. Next, we will
navigate back to the home directory. So far we have seen how to navigate “down”
into folders, but how do we navigate back “up” to the parent folder? There are
different ways to do it. For example, we could specify the complete path of
where we want to go:

$ pwd
/home/03439/wallen/folder1/subfolderA
$ cd /home/03439/wallen/folder1
$ pwd
/home/03439/wallen/folder1/

Or, we could use a shortcut, .., which refers to the parent folder - one
level higher than the present location:

$ pwd
/home/03439/wallen/folder1
$ cd ..
$ pwd
/home/03439/wallen

We are back in our home directory. Finally, use the rmdir (remove
directory) command to remove folders. This will not work on folders that have
any contents (more on this later):

$ mkdir junkfolder
$ ls
folder1 folder2 folder3 junkfolder
$ rmdir junkfolder
$ ls
folder1 folder2 folder3

Before we move on, let’s remove the directories we have made, using rm -r to
remove our parent folder folder1 and its subfolders. The -r command line
option recursively removes subfolders and files located “down” the parent
directory. -r is required for non-empty folders.

$ rm -r folder1
$ ls
folder2 folder3

Which command should we use to remove folder2 and folder3?

$ rmdir folder2
$ rmdir folder3
$ ls

Creating and Manipulating Files

We have seen how to navigate around the filesystem and perform operations with
folders. But, what about files? Just like on Windows or Mac, we can easily
create new files, copy files, rename files, and move files to different
locations. First, we will navigate to the home directory and create a few new
folders and files with the mkdir and touch commands:

$ cd # cd on an empty line will automatically take you back to the home directory
$ pwd
/home/03439/wallen
$ mkdir folder1
$ mkdir folder2
$ mkdir folder3
$ touch file_a
$ touch file_b
$ touch file_c
$ ls
file_a file_b file_c folder1 folder2 folder3

These files we have created are all empty. Removing a file is done with the
rm (remove) command. Please note that on Linux file systems, there is no
“Recycle Bin”. Any file or folder removed is gone forever and often
un-recoverable:

$ touch junkfile
$ rm junkfile

Moving files with the mv command and copying files with the cp command
works similarly to how you would expect on a Windows or Mac machine. The context
around the move or copy operation determines what the result will be. For
example, we could move and/or copy files into folders:

$ mv file_a folder1/
$ mv file_b folder2/
$ cp file_c folder3/

Before listing the results with ls, try to guess what the result will be.

$ ls
file_c folder1 folder2 folder3
$ ls folder1
file_a
$ ls folder2
file_b
$ ls folder3
file_c

Two files have been moved into folders, and file_c has been copied - so
there is still a copy of file_c in the home directory. Move and copy
commands can also be used to change the name of a file:

$ cp file_c file_c_copy
$ mv file_c file_c_new_name

By now, you may have found that Linux is very unforgiving with typos. Generous
use of the <Tab> key to auto-complete file and folder names, as well as the
<UpArrow> to cycle back through command history, will greatly improve the
experience. As a general rule, try not to use spaces or strange characters in
files or folder names. Stick to:

A-Z # capital letters
a-z # lowercase letters
0-9 # digits
- # hyphen
_ # underscore
. # period

Before we move on, let’s clean up once again by removing the files and folders
we have created. Do you remember the command for removing non-empty folders?

$ rm -r folder1
$ rm -r folder2
$ rm -r folder3

How do we remove file_c_copy and file_c_new_name?

$ rm file_c_copy
$ rm file_c_new_name

Looking at the Contents of Files

Everything we have seen so far has been with empty files and folders. We will
now start looking at some real data. Navigate to your home directory, then issue
the following cp command to copy a public file on the server to your local
space:

$ cd ~ # the tilde ~ is also a shortcut referring to your home directory
$ pwd
/home/03439/wallen
$ cp /usr/share/dict/words .
$ ls
words

Try to use <Tab> to autocomplete the name of the file. Also, please notice
the single dot . at the end of the copy command, which indicates that you
want to cp the file to ., this present location (your home directory).

This words file is a standard file that can be found on most Linux operating
systems. It contains 479,828 words, each word on its own line. To see the
contents of a file, use the cat command to print it to screen:

$ cat words
1080
10-point
10th
11-point
12-point
16-point
18-point
1st
2
20-point

This is a long file! Printing everything to screen is much too fast and not very
useful. We can use a few other commands to look at the contents of the file with
more control:

$ more words

Press the <Enter> key to scroll through line-by-line, or the <Space> key
to scroll through page-by-page. Press q to quit the view, or <Ctrl+c> to
force a quit if things freeze up. A % indicator at the bottom of the screen
shows your progress through the file. This is still a little bit messy and fills
up the screen. The less command has the same effect, but is a little bit
cleaner:

$ less words

Scrolling through the data is the same, but now we can also search the data.
Press the / forward slash key, and type a word that you would like to search
for. The screen will jump down to the first match of that word. The n key
will cycle through other matches, if they exist.

Finally, you can view just the beginning or the end of a file with the head
and tail commands. For example:

$ head words
$ tail words

The > and >> shortcuts in Linux indicate that you would like to redirect
the output of one of the commands above. Instead of printing to screen, the
output can be redirected into a file:

$ cat words > words_new.txt
$ head words > first_10_lines.txt

A single greater than sign > will redirect and overwrite any contents in
the target file. A double greater than sign >> will redirect and append
any output to the end of the target file.

One final useful way to look at the contents of files is with the grep
command. grep searches a file for a specific pattern, and returns all lines
that match the pattern. For example:

$ grep "banana" words
banana
bananaquit
bananas
cassabanana

Although it is not always necessary, it is safe to put the search term in
quotes.

Network and File Transfers

In order to login or transfer files to a remote Linux file system, you must know
the hostname (unique network identifier) and the username. If you are already on
a Linux file system, those are easy to determine using the following commands:

$ whoami
wallen
$ hostname -f
login1.longhorn.tacc.utexas.edu

Given that information, a user would remotely login to this Linux machine using
ssh in a Terminal:

[local]$ ssh wallen@longhorn.tacc.utexas.edu
enter password
enter 6-digit token
[longhorn]$

Windows users would typically use the program PuTTY (or another SSH client)
to perform this operation. Logging out of a remote system is done using the
logout command, or the shortcut <Ctrl+d>:

[longhorn]$ logout
[local]$

Copying files from your local computer to your home folder on Longhorn would require
the scp command (Windows users use a client “WinSCP”):

[local]$ scp my_file wallen@longhorn.tacc.utexas.edu:/home/03439/wallen/
enter password
enter 6-digit token

In this command, you specify the name of the file you want to transfer
(my_file), the username (wallen), the hostname
(longhorn.tacc.utexas.edu), and the path you want to put the file
(/home/03439/wallen/). Take careful notice of the separators including spaces,
the @ symbol, and the :.

Copy files from Longhorn to your local computer using the following:

[local]$ scp wallen@longhorn.tacc.utexas.edu:/home/03439/wallen/my_file ./
enter password
enter 6-digit token

Instead of files, full directories can be copied using the “recursive” flag
(scp -r ...). The rsync tool is an advanced copy tool that is useful for
synching data between two sites. Although we will not go into depth here,
example rsync usage is as follows:

$ rsync -azv local remote
$ rsync -azv remote local

This is just the basics of copying files. See example
scp usage [https://en.wikipedia.org/wiki/Secure_copy] and example
rsync usage [https://en.wikipedia.org/wiki/Rsync] for more info.

Text Editing with VIM

VIM is a text editor used on Linux file systems.

Open a file (or create a new file if it does not exist):

$ vim file_name

There are two “modes” in VIM that we will talk about today. They are called
“insert mode” and “normal mode”. In insert mode, the user is typing text into a
file as seen through the terminal (think about typing text into TextEdit or
Notepad). In normal mode, the user can perform other functions like save, quit,
cut and paste, find and replace, etc. (think about clicking the menu options in
TextEdit or Notepad). The two main keys to remember to toggle between the modes
are i and Esc.

Entering VIM insert mode:

> i

Entering VIM normal mode:

> Esc

A summary of the most important keys to know for normal mode are:

Navigating the file:

arrow keys move up, down, left, right
 Ctrl+u page up
 Ctrl+d page down

 0 move to beginning of line
 $ move to end of line

 gg move to beginning of file
 G move to end of file
 :N move to line N

Saving and quitting:

 :q quit editing the file
 :q! quit editing the file without saving

 :w save the file, continue editing
 :wq save and quit

Review of Topics Covered

Part 1: Creating and navigating folders

	Command

	Effect

	pwd

	print working directory

	ls

	list files and directories

	ls -l

	list files in column format

	mkdir dir_name/

	make a new directory

	cd dir_name/

	navigate into a directory

	rmdir dir_name/

	remove an empty directory

	rm -r dir_name/

	remove a directory and its contents

	. or ./

	refers to the present location

	.. or ../

	refers to the parent directory

Part 2: Creating and manipulating files

	Command

	Effect

	touch file_name

	create a new file

	rm file_name

	remove a file

	rm -r dir_name/

	remove a directory and its contents

	mv file_name dir_name/

	move a file into a directory

	mv old_file new_file

	change the name of a file

	mv old_dir/ new_dir/

	change the name of a directory

	cp old_file new_file

	copy a file

	cp -r old_dir/ new_dir/

	copy a directory

	<Tab>

	autocomplete file or folder names

	<UpArrow>

	cycle through command history

Part 3: Looking at the contents of files

	Command

	Effect

	cat file_name

	print file contents to screen

	cat file_name >> new_file

	redirect output to new file

	more file_name

	scroll through file contents

	less file_name

	scroll through file contents

	head file_name

	output beginning of file

	tail file_name

	output end of a file

	grep pattern file_name

	search for ‘pattern’ in a file

	~/

	shortcut for home directory

	<Ctrl+c>

	force interrupt

	>

	redirect and overwrite

	>>

	redirect and append

Part 4: Network and file transfers

	Command

	Effect

	hostname -f

	print hostname

	whoami

	print username

	ssh username@hostname

	remote login

	logout

	logout

	scp local remote

	copy a file from local to remote

	scp remote local

	copy a file from remote to local

	rsync -azv local remote

	sync files between local and remote

	rsync -azv remote local

	sync files between remote and local

	<Ctrl+d>

	logout of host

Part 5: Text editing with VIM

	Command

	Effect

	vim file.txt

	open “file.txt” and edit with vim

	i

	toggle to insert mode

	<Esc>

	toggle to normal mode

	<arrow keys>

	navigate the file

	:q

	quit ending the file

	:q!

	quit editing the file without saving

	:w

	save the file, continue editing

	:wq

	save and quit

Additional Resources

	Practice Linux commands safely in a web-based emulator [https://bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192]

	This is a good summary of the important commands you need to know [https://linuxjourney.com/lesson/the-shell]

	Practice VIM in a web browser [http://openvim.com/]

	Practice VIM on the command line by typing vimtutor

Python Essentials

After working through this material, attendees should be able to:

	Write and execute Python code on a remote server

	Use variables, lists, and dictionaries in Python

	Write conditionals using a variety of comparison operators

	Write useful while and for loops

	Arrange code into clean, well organized functions

	Read input from and write output to a file

	Import and use standard and non-standard Python libraries

Topics covered in this module include:

	Data types and variables (ints, floats, bools, strings, type(), print())

	Arithmetic operations (+, -, *, /, **, %, //)

	Lists and dictionaries (creating, interpreting, appending)

	Conditionals and control loops (comparison operators, if/elif/else, while, for, break, continue, pass)

	Functions (defining, passing arguments, returning values)

	File handling (open, with, read(), readline(), strip(), write())

	Importing libraries (import, random, names, pip)

Log in to Longhorn

To log in to longhorn.tacc.utexas.edu, follow the instructions for your operating
system or ssh client below.

Mac / Linux

Open the application 'Terminal'
ssh username@longhorn.tacc.utexas.edu
(enter password)
(enter 6-digit token)

Windows

Open the application 'PuTTY'
enter Host Name: longhorn.tacc.utexas.edu
(click 'Open')
(enter username)
(enter password)
(enter 6-digit token)

If you can’t access Longhorn yet, a local or web-based Python 3
environment will work for this guide. However, you will need to access Longhorn
for future materials.

Try this Python 3 environment in a browser [https://www.katacoda.com/scenario-examples/courses/environment-usages/python].

Note

For the first few sections below, we will be using the Python interpreter
in interactive mode to try out different things. Later on when we get to
more complex code, we will be saving the code in files (scripts) and invoking
the interpreter non-interactively.

Data Types and Variables

Start up the interactive Python interpreter:

[longhorn]$ python3
Python 3.6.8 (default, Apr 25 2019, 20:47:23)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Tip

To exit the interpreter, type quit().

The most common data types in Python are similar to other programming languages.
For this workshop, we probably only need to worry about integers, floats,
booleans, and strings.

Assign some values to variables by doing the following:

>>> my_int = 5
>>> my_float = 5.0
>>> my_bool = True # or False, notice capital letters
>>> my_string = 'Hello, world!'

In Python, you don’t have to declare type. Python figures out the type
automatically. Check using the type() function:

>>> type(my_int)
<class 'int'>
>>> type(my_float)
<class 'float'>
>>> type(my_bool)
<class 'bool'>
>>> type(my_string)
<class 'str'>

Print the values of each variable using the print() function:

>> print(my_int)
5
>> print('my_int')
my_int

(Try printing the others as well). And, notice what happens when we print with
and without single quotes? What is the difference between my_int and
'my_int'?

You can convert between types using a few different functions. For example, when
you read in data from a file, numbers are often read as strings. Thus, you may
want to convert the string to integer or float as appropriate:

>>> str(my_int) # convert int to string
>>> str(my_float) # convert float to string
>>> int(my_string) # convert string to int
>>> float(my_string) # convert string to float
>>>
>>> value = 5
>>> print(value)
5
>>> type(value)
<class 'int'>
>>> new_value = str(value)
>>> print(new_value)
'5'
>>> type(new_value)
<class 'str'>

Arithmetic Operations

Next, we will look at some basic arithmetic. You are probably familiar with the
standard operations from other languages:

Operator Function Example Result
+ Addition 1+1 2
- Subtraction 9-5 4
* Multiplication 2*2 4
/ Division 8/4 2
** Exponentiation 3**2 9
% Modulus 5%2 1
// Floor division 5//2 2

Try a few things to see how they work:

>>> print(2+2)
>>> print(355/113)
>>> print(10%9)
>>> print(3+5*2)
>>> print('hello' + 'world')
>>> print('some' + 1)
>>> print('number' * 5)

Also, carefully consider how arithmetic options may affect type:

>>> number1 = 5.0/2
>>> type(number1)
<class 'float'>
>>> print(number1)
2.5
>>> number2 = 5/2
>>> type(number2)
<class 'float'>
>>> print(number2)
2.5
>>> print(int(number2))
2

Lists and Dictionaries

Lists are a data structure in Python that can contain multiple elements.
They are ordered, they can contain duplicate values, and they can be modified.
Declare a list with square brackets as follows:

>>> my_shape_list = ['circle', 'triangle', 'square', 'diamond']
>>> type(my_shape_list)
<class 'list'>
>>> print(my_shape_list)
['circle', 'triangle', 'square', 'diamond']

Access individual list elements:

>>> print(my_shape_list[0])
circle
>>> type(my_shape_list[0])
<class 'str'>
>>> print(my_shape_list[2])
square

Create an empty list and add things to it:

>>> my_number_list = []
>>> my_number_list.append(5) # 'append()' is a method of the list class
>>> my_number_list.append(6)
>>> my_number_list.append(2)
>>> my_number_list.append(2**2)
>>> print(my_number_list)
[5, 6, 2, 4]
>>> type(my_number_list)
<class 'list'>
>>> type(my_number_list[1])
<class 'int'>

Lists are not restricted to containing one data type. Combine the lists together
to demonstrate:

>>> my_big_list = my_shape_list + my_number_list
>>> print(my_big_list)
['circle', 'triangle', 'square', 'diamond', 5, 6, 2, 4]

Another way to access the contents of lists is by slicing. Slicing supports a
start index, stop index, and step taking the form: mylist[start:stop:step].
Only the first colon is required. If you omit the start, stop, or :step, it is
assumed you mean the beginning, end, and a step of 1, respectively. Here are
some examples of slicing:

>>> mylist = ['thing1', 'thing2', 'thing3', 'thing4', 'thing5']
>>> print(mylist[0:2]) # returns the first two things
['thing1', 'thing2']
>>> print(mylist[:2]) # if you omit the start index, it assumes the beginning
['thing1', 'thing2']
>>> print(mylist[-2:]) # returns the last two things (omit the stop index and it assumes the end)
['thing4', 'thing5']
>>> print(mylist[:]) # returns the entire list
['thing1', 'thing2', 'thing3', 'thing4', 'thing5']
>>> print(mylist[::2]) # return every other thing (step = 2)
['thing1', 'thing3', 'thing5']

Note

If you slice from a list, it returns an object of type list. If you access a
list element by its index, it returns an object of whatever type that element
is. The choice of whether to slice from a list, or iterate over a list by
index, will depend on what you want to do with the data.

Dictionaries are another data structure in Python that contain key:value
pairs. They are always unordered, they cannot contain duplicate keys, and they
can be modified. Create a new dictionary using curly brackets:

>>> my_shape_dict = {
... 'most_favorite': 'square',
... 'least_favorite': 'circle',
... 'pointiest': 'triangle',
... 'roundest': 'circle'
... }
>>> type(my_shape_dict)
<class 'dict'>
>>> print(my_shape_dict)
{'most_favorite': 'square', 'least_favorite': 'circle', 'pointiest': 'triangle', 'roundest': 'circle'}
>>> print(my_shape_dict['most_favorite'])
square

As your preferences change over time, so to can values stored in dictionaries:

>>> my_shape_dict['most_favorite'] = 'rectangle'
>>> print(my_shape_dict['most_favorite'])
rectangle

Add new key:value pairs to the dictionary as follows:

>>> my_shape_dict['funniest'] = 'squircle'
>>> print(my_shape_dict['funniest'])
squircle

Many other methods exist to access, manipulate, interpolate, copy, etc., lists
and dictionaries. We will learn more about them out as we encounter them later
in this course.

Conditionals and Control Loops

Python comparison operators allow you to add conditions into your code in
the form of if / elif / else statements. Valid comparison operators
include:

Operator Comparison Example Result
== Equal 1==2 False
!= Not equal 1!=2 True
> Greater than 1>2 False
< Less than 1<2 True
>= Greater than or equal to 1>=2 False
<= Less Than or equal to 1<=2 True

A valid conditional statement might look like:

>>> num1 = 10
>>> num2 = 20
>>>
>>> if (num1 > num2): # notice the colon
... print('num1 is larger') # notice the indent
... elif (num2 > num1):
... print('num2 is larger')
... else:
... print('num1 and num2 are equal')

In addition, conditional statements can be combined with logical operators.
Valid logical operators include:

Operator Description Example
and Returns True if both are True a < b and c < d
or Returns True if at least one is True a < b or c < d
not Negate the result not(a < b)

For example, consider the following code:

>>> num1 = 10
>>> num2 = 20
>>>
>>> if (num1 < 100 and num2 < 100):
... print('both are less than 100')
... else:
... print('at least one of them is not less than 100')

While loops also execute according to conditionals. They will continue to
execute as long as a condition is True. For example:

>>> i = 0
>>>
>>> while (i < 10):
... print(f'i = {i}') # literal string interpolation
... i = i + 1

The break statement can also be used to escape loops:

>>> i = 0
>>>
>>> while (i < 10):
... print(f'i = {i}')
... i = i + 1
... if (i==5):
... break
... else:
... continue

For loops in Python are useful when you need to execute the same set of
instructions over and over again. They are especially great for iterating over
lists:

>>> my_shape_list = ['circle', 'triangle', 'square', 'diamond']
>>>
>>> for shape in my_shape_list:
... print(shape)
>>>
>>> for shape in my_shape_list:
... if (shape == 'circle'):
... pass # do nothing
... else:
... print(shape)

You can also use the range() function to iterate over a range of numbers:

>>> for x in range(10):
... print(x)
>>>
>>> for x in range(10, 100, 5):
... print(x)
>>>
>>> for a in range(3):
... for b in range(3):
... for c in range(3):
... print(f'{a} + {b} + {c} = {a+b+c}')

Note

The code is getting a little bit more complicated now. It will be better to
stop running in the interpreter’s interactive mode, and start writing our
code in Python scripts.

Functions

Functions are blocks of codes that are run only when we call them. We can
pass data into functions, and have functions return data to us. Functions are
absolutely essential to keeping code clean and organized.

On the command line, use a text editor to start writing a Python script:

[longhorn]$ vim function_test.py

Enter the following text into the script:

	1
2
3
4

	def hello_world():
 print('Hello, world!')

hello_world()

After saving and quiting the file, execute the script (Python code is not
compiled - just run the raw script with the python3 executable):

[longhorn]$ python3 function_test.py
Hello, world!

Note

Future examples from this point on will assume familiarity with using the
text editor and executing the script. We will just be showing the contents of
the script and console output.

More advanced functions can take parameters and return results:

	1
2
3
4
5

	def add5(value):
 return(value + 5)

final_number = add5(10)
print(final_number)

15

Pass multiple parameters to a function:

	1
2
3
4
5

	def add5_after_multiplying(value1, value2):
 return((value1 * value2) + 5)

final_number = add5_after_multiplying(10, 2)
print(final_number)

25

It is a good idea to put your list operations into a function in case you plan
to iterate over multiple lists:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	def print_ts(mylist):
 for x in mylist:
 if (x[0] == 't'): # a string (x) can be interpreted as a list of chars!
 print(x)

list1 = ['circle', 'triangle', 'square', 'diamond']
list2 = ['one', 'two', 'three', 'four']

print_ts(list1)
print_ts(list2)

triangle
two
three

There are many more ways to call functions, including handing an arbitrary
number of arguments, passing keyword / unordered arguments, assigning default
values to arguments, and more.

File Handling

The open() function does all of the file handling in Python. It takes two
arguments - the filename and the mode. The possible modes are read (r),
write (w), append (a), or create (x).

For example, to read a file do the following:

	1
2
3

	with open('/usr/share/dict/words', 'r') as f:
 for x in range(5):
 print(f.readline())

1080

10-point

10th

11-point

12-point

Tip

By opening the file with the with statement above, you get built in
exception handling, and it automatically will close the file handle for you.
It is generally recommended as the best practice for file handling.

You may have noticed in the above that there seems to be an extra space between
each word. What is actually happening is that the file being read has newline
characters on the end of each line (\n). When read into the Python script,
the original new line is being printed, followed by another newline added by the
print() function. Stripping the newline character from the original string
is the easiest way to solve this problem:

	1
2
3

	with open('/usr/share/dict/words', 'r') as f:
 for x in range(5):
 print(f.readline().strip('\n'))

1080
10-point
10th
11-point
12-point

Read the whole file and store it as a list:

	1
2
3
4
5
6
7

	words = []

with open('/usr/share/dict/words', 'r') as f:
 words = f.read().splitlines() # careful of memory usage

for x in range(5):
 print(words[x])

1080
10-point
10th
11-point
12-point

Write output to a new file on the file system; make sure you are attempting to
write somwhere where you have permissions to write:

	1
2
3
4
5

	my_shapes = ['circle', 'triangle', 'square', 'diamond']

with open('my_shapes.txt', 'w') as f:
 for shape in my_shapes:
 f.write(shape)

(in my_shapes.txt)
circletrianglesquarediamond

You may notice the output file is lacking in newlines this time. Try adding
newline characters to your output:

	1
2
3
4
5

	my_shapes = ['circle', 'triangle', 'square', 'diamond']

with open('my_shapes.txt', 'w') as f:
 for shape in my_shapes:
 f.write(f'{shape}\n')

(in my_shapes.txt)
circle
triangle
square
diamond

Now notice that the original line in the output file is gone - it has been
overwritten. Be careful if you are using write (w) vs. append (a).

Importing Libraries

The Python built-in functions, some of which we have seen above, are useful but
limited. Part of what makes Python so powerful is the huge number and variety
of libraries that can be imported. For example, if you want to work with
random numbers, you have to import the ‘random’ library into your code, which
has a method for generating random numbers called ‘random’.

	1
2
3
4

	import random

for i in range(5):
 print(random.random())

0.47115888799541383
0.5202615354150987
0.8892412583071456
0.7467080997595558
0.025668541754695906

More information about using the random library can be found in the
Python docs [https://docs.python.org/3.6/library/random.html]

Some libraries that you might want to use are not included in the official
Python distribution - called the Python Standard Library. Libraries written
by the user community can often be found on PyPI.org [https://pypi.org/] and
downloaded to your local environment using a tool called pip3.

For example, if you wanted to download the
names [https://pypi.org/project/names/] library and use it in your Python
code, you would do the following:

[longhorn]$ pip3 install --user names
Collecting names
 Downloading https://files.pythonhosted.org/packages/44/4e/f9cb7ef2df0250f4ba3334fbdabaa94f9c88097089763d8e85ada8092f84/names-0.3.0.tar.gz (789kB)
 100% |████████████████████████████████| 798kB 1.1MB/s
Installing collected packages: names
 Running setup.py install for names ... done
Successfully installed names-0.3.0

Notice the library is installed above with the --user flag. Longhorn
is a shared system and non-privileged users can not download or install packages
in root locations. The --user flag instructs pip3 to install the library
in your own home directory.

	1
2
3
4

	import names

for i in range(5):
 print(names.get_full_name())

Johnny Campbell
Lawrence Webb
Johnathan Holmes
Mary Wang
Jonathan Henry

Exercises

Test your understanding of the materials above by attempting the following
exercises.

	Create a list of ~10 different integers. Write a function (using modulus and
conditionals) to determine if each integer is even or odd. Print to screen
each digit followed by the word ‘even’ or ‘odd’ as appropriate.

	Using nested for loops and if statements, write a program that iterates over
every integer from 3 to 100 (inclusive) and prints out the number only if it
is a prime number.

	Create three lists containing 10 integers each. The first list should contain
all the integers sequentially from 1 to 10 (inclusive). The second list
should contain the squares of each element in the first list. The third list
should contain the cubes of each element in the first list. Print all three
lists side-by-side in three columns. E.g. the first row should contain 1, 1, 1
and the second row should contain 2, 4, 8.

	Write a script to read in /usr/share/dict/words and print just the last 10
lines of the file. Write another script to only print words beginning with the
letters “pyt”.

Additional Resources

	The Python Standard Library [https://docs.python.org/3/library/]

	PEP 8 Python Style Guide [https://www.python.org/dev/peps/pep-0008/]

	Python3 environment in a browser [https://www.katacoda.com/scenario-examples/courses/environment-usages/python]

	Jupyter Notebooks in a browser [https://jupyter.org/try]

NumPy, SciPy, and Matplotlib Primer

NumPy, SciPy, and Matplotlib are three complementary and important Python
libraries that are useful for exploratory data analysis and machine learning.
This primer is a high-level introduction to each library, providing short
examples for each.

NumPy

NumPy provides a multidimensional array object for very fast operations on
numerical data (e.g. arithmetic, logical, sorting, selecting, transforming,
statistical, etc.).

Much faster than doing similar operations with normal Python data types because
it uses pre-complied, vectorized C code behind the scenes.

	1
2
3
4
5
6
7

	import numpy as np

a = np.arange(15).reshape(3, 5)

print(a)
print(a.shape)
print(a.ndim)

Output:

[[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14]]
(3, 5)
2

A few very easy array operation examples:

	1
2
3
4
5
6
7
8

	import numpy as np

a = np.arange(15).reshape(3, 5)

print(a.max())
print(a.min())
print(a.sum())
print(a*2)

Output:

14
0
105
[[0 2 4 6 8]
 [10 12 14 16 18]
 [20 22 24 26 28]]

SciPy

SciPy provides mathematical algorithms and convenience functions for working
with NumPy arrays.

It comes with a host of high level commands for different scientific computing
domains, including clustering, Fourier transforms, integration, interpolation,
linear algebra, signal processing, among others.

The following short code block defines a function to be integrated (called the
“integrand”) as f(x) = ax^2 + b. The SciPy quad function evaluates the
integral over a given range, in this case from 0 to 1. The output is a tuple
where the first item is the value of the integral, and the second item is the
estimated error.

	1
2
3
4
5
6
7
8

	from scipy.integrate import quad
def integrand(x, a, b):
 return a*x**2 + b

a = 2
b = 1
I = quad(integrand, 0, 1, args=(a,b))
print(I)

Output:

(1.6666666666666667, 1.8503717077085944e-14)

Matplotlib

Matplotlib provides utilities for creating static, animated, and interactive
visualizations of data.

You can use it to create many different types of plots (line, histogram, scatter,
countour, 3D, etc.) with full control over all labels, colors, styles, etc. Look
online for examples of the kind of plot you want to make, and undoubtedly there
will be some Matplotlib samples available.

	1
2
3
4
5
6

	import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2*np.pi, 50)
plt.plot(x, np.sin(x))
plt.show()

[image: ../_images/sin_wave_1.png]

	1
2
3
4
5
6

	import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2*np.pi, 50)
plt.plot(x, np.sin(x), 'r-o', x, np.sin(2*x), 'g--')
plt.show()

[image: ../_images/sin_wave_2.png]

	1
2

	# save the image to file instead
plt.savefig('my_sinwave.png')

Additional Resources

	NumPy Docs [https://numpy.org/doc/stable/]

	SciPy Docs [https://scipy.github.io/devdocs/index.html]

	Matplotlib Docs [https://matplotlib.org/stable/users/index]

Index

 _images/tacc_at_a_glance_2.png
SYSTEM MILESTONES

=0 GigaFLOPS (GFLOPS)
-; 1 billion floating-point

operations per second
ﬂ TeraFLOPS (TFLOPS)
o 1GFLOPS x 1000
PetaFlops (PFLOPS)

%? ITFLOPSX 1000

Golden
163 GFLOPS

2001

U

Cray T3E
272 Processors

Lonestar2
3.67 TFLOPS

2003

i

Dell EMC PowerEdge
World Ranking' #65

Ranger
579.4 TFLOPS

2008

il

Sun Blade
World Ranking' #7

Stampedel
10 PFLOPS

Dell EMC PowerEdge
World Ranking' #5

2013

i

Stampede2
18 PFLOPS

2017

i

Dell EMC PowerEdge
World Ranking' #12

Frontera
38.7 PFLOPS

2019

p

Dell-Intel Machine
World Ranking' #5

1. Top500 list Ranking at Launch

SYSTEM HIGHLIGHTS

[
HHHH

HEEH

HPC SYSTEMS

Frontera
NSF flagship Tier 1 system

Stampede2

National computing
resource with thousands
of users

Lonestar5

Dedicated HPC for
UT system research

3

CLOUD

Chameleon
Cloud testbed

Jetstream

General purpose
research computing

Rodeo
Customizable computat-
ional environment

ot

MACHINE LEARNING

Maverick2
GPU accelerated Machine
Learning and Deep Learning

Longhorn
GPU accelerated
Frontera subsystem

03

VISUALIZATION

Stallion
World-class multi-tile
large scale display

Lasso
Large-scale multi-
touch display

Rattler
Custom-engineered
matrix display

©

STORAGE

Ranch
Long-term archival storage

Stockyard
TACC global filesystem

Corral
High-value data
collections resource

_images/tacc_at_a_glance_3.png
7 BILLION | 5 BILLION | 100PB

compule hours annually files processed annually stored archival data
SERVING* USER DEMAND UPTIME

997

Stampede2

177827112 [ax === L

NODE HOURS Frontera

6,421,836

JOBS 3 5 » .
LIGO Gravitational &
8[]'[][][]+ Wave Detection
WEB PORTAL USERS Aided confirmation, leading to Nobel Prize
15,000
RESEARCHERS First-ever
Black Hole I
lI'UUU+ Pivotal role in enabling Event H
PROJECTS Telescope data analysis
IBNZ‘E'U’I'IUNS

132

FIELDS OF SCIENCE

76

COUNTRIES

a0

STATES

5 * i
Powered first-ever all-atom model of
SARS-COV-2 viral envelope

*2020 figures

_images/sin_wave_2.png

_images/tacc_at_a_glance_1.png
of orginal
staff remain

lacos consumed
annually

Current Staff

in-person academic
+ users lrained courses al
annually UT Austin
p
_OVER

1607

MILES

network
electrical cable
capacity
" Enough to stretch
Enough to power ' from TACC to the
6,000 homes #nq Alamo and back!

| Compute power of top 2 TACC

supercomputers equivafcm to

225,000

one for every seat in UT Austin’s
Darrell K Royal-Texas Memorial
Stadium two times over

_images/tacc_portals.png
=L p— P
SO e

€O segresesi LR DS annc ..
DESIGNSAFECI TEEAS JERNE. Poss Fandemic P B¥wifinar ~—
T WATURAL RAZRRDS v o Y- —
ENGINEERING CONMUN 0010 . 7lohn e - yhaow -2
CARAPORT « wu: so: nee een: tosmes noe W e
i Data on Stampede API Explorer ‘B
12Feein
Areamvore [CTEIIY #imvon vom orooe [o oo [2
e Name File St Actions e« oy - s o A T s Pt o e e o - —
e o vt i b n P P e gt e 7o e e Lo o oy
s o8 rasmpe— 1 o . e P 2 S S o A e g Pt i g e o St
——y———
[s prassp—"" 1 - - - . -—
B taemac wska [o oo R Y
s e
2 DI 4o e D .
- “one o & even [S/ 23
- one JUSSUTTSoS . - [T— - - -
= = T = —s —
B o P Srimmmeman MstemewOSsme | Owme e
- ook Ll A Oownces @ Prewew
[= ouee |]] pe—
B o e s Jrsmep— 1
| venve 40K8 e - ﬁ. ﬂAI’TED-O I
3 P . i = FOy———— o
. .
L — - [—— P —— P ——
© Eip—" Bt UanD ime | o — — [T o
kL O O Fdtep MG M. ot et . @ | Wenet Duwvenis #RAAE D 5
impepepen L iz T - —
S e—— — —— s
epRe—— LR samuan wmae gt O TSI hhere gHAE D § !
prpmyess = v P —— i —
P T oo R FTTHTI [l Y =
e ot 3. 3
SERVER oot

oy —
o Ml Con
M

b
==

CREATENEW +

_images/vis_portal.png
® O ® ¢ TACC Analysis Portal x +

< C @ vis02.tacc.utexas.edufjobs/ Q =0
ACC | Analysis Portal wallen
Submit New Job System Status
System Status Utilization Job Count
System - v Running: 103
Frontera @ Open 98% Q:r;:'::_' Jond
Application Select System v Longhorn © Open 87% 2:2?::-::‘
_ . Running: 17
Project Select System v Maverick2 © Open 53% Queued: 0
Running: 887
Stampede2 @ Open 98% ’
Queue Select System v Queued: 507
Nodes 1 Tasks 1 Past Jobs

JNB-Longhorn 12/03/2021 Details
Options RST-Longhorn 12/01/2021 Details
Time Limit H:M:S JNB-Longhorn 12/01/2021 Details

. . DCV-Maverick2 11/08/2021 Details
Reservation reservation name

DCV-Maverick2 11/08/2021 Details

VNC Desktop Resolution WIDTHXHEIGHT

_images/tacc_building.png

_images/tacc_map.png
) . | 'Iuexas Adva/lced ”7’\ S

4
_/V Cor\nputlng Center 0,‘
f : ‘

N/
N\ .‘ v
‘ \ Fxd
@ r\ & \\ . NORTH LAMA
} / @ A
ool a?
[©)
- (<)
° S
NORTHWEST & .0 » Ge3) 35 ~
HILLS ;? b \ ’
’ § @ CRESTVIEW R
e w 8N
(<) o
/ ALLANDALE 5] 0 \/ n\ 3Ahr1 min
ﬂ 3 hr 8 min) e / 8.8 miles
92m||es o KZhr39mln
A\ . 7.7 miles /
o
| () =
'\/\’\’/‘ o I
[
)
o
(&)
>, (<)
2! %,c
TARRYTOWN | °
st %
Hills {
g

& /A
‘§ The University of é
\Texas at Austin ;

_images/vis_portal_filled.png
CC | Analysis Portal

Submit New Job

System Longhorn v
Application Jupyter notebook v
Project ASC21018 v
Queue V100 v
Nodes 1 Tasks 1

Options

Time Limit 04:00:00

Reservation Al-Workshop

VNC Desktop Resolution WIDTHXHEIGHT

aura | v

_images/jupyter_overview_5.png
':' Jupyter Untitled Last Gheckpoint: a minute ago (unsaved changes) e. Logout

File Edit View Insert Cell Kernel Help Trusted ¢

Python3 O
B+ < @ B 4 % PRn B C » Code M=

I In []:

_images/jupyter_overview_6.png
': Jupyter Untitled2 Last Gheckpoint: 5 minutes ago (autosaved) @ Logout

File Edit View Insert Cell Kernel Help

+ % A B 2 v PR B C P (Mo v @

Trusted | Python3 ©

In [1]:
This is a markdown cell
It contains comments, descriptions, narrative
In [2]: print(varl) # variables persist in the notebook kernel between cells

print (var2)

10
20

_images/jupyter_overview_3.png
Z Jupyter Quit | | Logout

Files Running Clusters

Q

Currently running Jupyter processes

Terminals ~
>_ terminals/1 Shutdown
Notebooks
B Untitled.ipynb Python 3 seconds ago

B Untitled1.ipynb Python 3 seconds ago

_images/jupyter_overview_4.png
~ Jupyter

©008-004.longhorn(1000)$ 1s
amber20/ bin/
autodock/ codeserverl.log
autodock_GPU/ devito/
autodock_vina/ fftw/

©008-004. longhorn (1001)$ |

HPL/
install-notes/
longhorn/
makeflow/

primes/
R/
relion/
rstudio/

SCRATCH@
snakemake/
taiyaki/
test-compilers/

Logout

test-job/ Untitledl.ipynb
test-MPI/ Untitled.ipynb
test-nvidia/ workflow/

test-python-mpi/

_images/sin_wave_1.png
100
075
050
025
0.00
-025
-050
-0.75
-1.00

nav.xhtml

 Table of Contents

 		
 Developing Fundamental AI Programming Skills for Drug Discovery

 		
 Onboarding to TACC

 		
 About TACC

 		
 Before We Continue

 		
 Jupyter Notebooks

 		
 What are Jupyter Notebooks?

 		
 How do Jupyter Notebooks Work?

 		
 How do You Access Jupyter Notebooks?

 		
 Interacting with Jupyter Notebooks

 		
 Miscellaneous Tips and Tricks

 		
 Exercise

 		
 Linux Refresher

 		
 Log in to Longhorn

 		
 Creating and Navigating Folders

 		
 Creating and Manipulating Files

 		
 Looking at the Contents of Files

 		
 Network and File Transfers

 		
 Text Editing with VIM

 		
 Review of Topics Covered

 		
 Additional Resources

 		
 Python Essentials

 		
 Log in to Longhorn

 		
 Data Types and Variables

 		
 Arithmetic Operations

 		
 Lists and Dictionaries

 		
 Conditionals and Control Loops

 		
 Functions

 		
 File Handling

 		
 Importing Libraries

 		
 Exercises

 		
 Additional Resources

 		
 NumPy, SciPy, and Matplotlib Primer

 		
 NumPy

 		
 SciPy

 		
 Matplotlib

 		
 Additional Resources

_images/jupyter_overview_1.png
Z Jupyter

Files
Select items to perform actions on them.

Oo

(w]

Running Clusters

- -/

0 amber20

O autodock

0 autodock_GPU

3 autodock_vina

Create a new notebook with Python 3

Quit

Upload

Name ¥ | Last Modified
ayearago
ayearago
ayearago

2 years ago

Logout

New ~

File size

_static/plus.png

_images/jupyter_overview_2.png
Z Jupyter

Files
Select items to perform actions on them.

Oo

(w]

Running Clusters

- -/
0 amber20
O autodock
0 autodock_GPU

3 autodock_vina

Name &

Quit | Logout

Q

Upload | [New~

Notebook:

Python 3

Other
Text File
Folder

Terminal

_static/file.png

_images/frontera_racks.png

_static/minus.png

