
Developing Fundamental AI
Programming Skills for Drug Discovery

Texas Advanced Computing Center

Dec 09, 2021

CONTENT:

1 Onboarding to TACC 3

2 Jupyter Notebooks 11

3 Linux Refresher 17

4 Python Essentials 27

5 NumPy, SciPy, and Matplotlib Primer 39

6 Additional Resources 43

i

ii

Developing Fundamental AI Programming Skills for Drug Discovery

This guide contains the content for Jupyter notebooks and portal access at TACC and Python fundamentals and
foundations for AI. The objectives of these sections are to introduce the use of Jupyter notebooks at TACC, and to
introduce the most fundamental Python skills that are necessary for domain scientists to be successful in AI coding
projects.

CONTENT: 1

Developing Fundamental AI Programming Skills for Drug Discovery

2 CONTENT:

CHAPTER

ONE

ONBOARDING TO TACC

The Texas Advanced Computing Center (TACC) at UT Austin designs and operates some of the world’s most powerful
computing resources. The center’s mission is to enable discoveries that advance science and society through the
application of advanced computing technologies.

We will be using cloud resources at TACC as our development environment. We will access the cloud resources via
our SSH clients and TACC account credentials, as well as through a visualization portal.

Attention: Everyone please apply for a TACC account now using this link. If you already have a TACC account,
you can just use that. Send your TACC username to wallen [at] tacc [dot] utexas [dot] edu as soon as possible.

1.1 About TACC

TACC is a Research Center, part of UT Austin, and located at the JJ Pickle Research Campus.

TACC at a Glance

Other TACC Services

• Portals and gateways

• Web service APIs

• Rich software stacks

• Consulting

• Curation and analysis

• Code optimization

• Training and outreach

• => Learn more

TACC Partnerships

• NSF: Leadership Class Computing Facility (LCCF)

• NSF: Extreme Science and Engineering Discovery Environment (XSEDE)

• UT Research Cyberinfrastructure (UTRC)

• TX Lonestar Education and Research Network (LEARN)

• Industry, STAR Program

• International, The International Collaboratory for Emerging Technologies

3

https://portal.tacc.utexas.edu/web/tup/account-request
https://www.tacc.utexas.edu/
https://www.tacc.utexas.edu/partnerships/star/partners

Developing Fundamental AI Programming Skills for Drug Discovery

Fig. 1: A short 7.7 mile walk from main campus!

Fig. 2: One of two TACC buildings located at JJ Pickle.

4 Chapter 1. Onboarding to TACC

Developing Fundamental AI Programming Skills for Drug Discovery

Fig. 3: A tall guy standing among taller Frontera racks.

1.1. About TACC 5

Developing Fundamental AI Programming Skills for Drug Discovery

6 Chapter 1. Onboarding to TACC

Developing Fundamental AI Programming Skills for Drug Discovery

1.1. About TACC 7

Developing Fundamental AI Programming Skills for Drug Discovery

Fig. 4: Snapshot of a few of TACC’s portal projects.

• => Learn more

Attention: Did you already e-mail me your TACC username?

1.2 Before We Continue

Using your SSH client, please try to log in to Longhorn. Make sure to use your own username in place of username:

[local]$ ssh username@longhorn.tacc.utexas.edu
To access the system:

1) If not using ssh-keys, please enter your TACC password at the password prompt
2) At the TACC Token prompt, enter your 6-digit code followed by <return>.

Password:
TACC Token Code:
Last login: Mon Dec 6 15:36:46 2021 from 192.168.64.11
--

Welcome to the Longhorn Supercomputer
Texas Advanced Computing Center, The University of Texas at Austin

--

** Unauthorized use/access is prohibited. **

If you log on to this computer system, you acknowledge your awareness
of and concurrence with the UT Austin Acceptable Use Policy. The
University will prosecute violators to the full extent of the law.

TACC Usage Policies:

(continues on next page)

8 Chapter 1. Onboarding to TACC

https://www.tacc.utexas.edu/

Developing Fundamental AI Programming Skills for Drug Discovery

(continued from previous page)

http://www.tacc.utexas.edu/user-services/usage-policies/
__

Welcome to Longhorn, *please* read these important system notes:

--> Longhorn user documentation is available at:
https://portal.tacc.utexas.edu/user-guides/longhorn

|\ /|
| ___________________________.-----.___________________________/ |
'.__________________________ __________________________.'

_ <_/| |_>
| | ___ __ _ ___ | | _ _ ___ ____ __ _
	/ _ \| \|	/ __)				_		/ _ \| .. \| \|			
	___	(_)	\ \	(_-- ()	_	(_)	'' /	\ \			
_____	___/	_	__	___/ '---'	_		_	___/	_	_\|_	__

---------------------- Project balances for user username ---------------------
Name Avail SUs Expires	Name Avail SUs Expires
ASC21018 12000 2022-06-30	SD2E-Communit 5548 2021-12-31
TACC-SCI 221130 2025-06-30	TRA21002 2040 2021-12-31
------------------------- Disk quotas for user username -----------------------	
Disk Usage (GB) Limit %Used File Usage Limit %Used	
/work 436.5 1024.0 42.63 1445104 3000000 48.17	
/home 28.1 40.0 70.26 192235 512000 37.55	
/scratch 571.3 0.0 0.00 10273017 0 0.00	

login2.longhorn(1000)$ # success!

Also, please try to log in to this Vis Portal using your TACC username and password:

https://vis02.tacc.utexas.edu/

1.2. Before We Continue 9

https://vis02.tacc.utexas.edu/

Developing Fundamental AI Programming Skills for Drug Discovery

Fig. 5: Successful login.

10 Chapter 1. Onboarding to TACC

CHAPTER

TWO

JUPYTER NOTEBOOKS

2.1 What are Jupyter Notebooks?

Jupyter Notebooks are a web-based, interactive computing tool for capturing the whole computation process: devel-
oping, documenting, and executing code, as well as communicating the results. They support interactive data science
and scientific computing across all programming languages, including Python.

2.2 How do Jupyter Notebooks Work?

An open notebook has exactly one interactive session connected to a kernel which will execute code sent by the user
and communicate back results. This kernel remains active if the web browser window is closed, and reopening the
same notebook from the dashboard will reconnect the web application to the same kernel. The kernel’s state, including
imported libraries and declared variables, persists between cells.

2.3 How do You Access Jupyter Notebooks?

1. The Jupyter website allows you to download Jupyter Notebook and/or try it in your browser.

2. The TACC Analysis Portal allows TACC users to run Jupyter through your browser on Frontera, Longhorn,
Maverick2, or Stampede2, so long as you have an allocation on that system.

3. The TACC DesignSafe Portal allows anyone with a TACC account to use Jupyter. (Log in, choose Workspace
=> Tools and Applications => Jupyter)

4. TACC provides small, short lived Jupyter notebooks to anyone with a TACC account via the TACC Cloud.

5. Public Jupyter notebooks are available through sites like Google Colaboratory.

6. Service exist to share notebooks in a browser including Binder.

11

https://www.jupyter.org
https://vis02.tacc.utexas.edu/
https://www.designsafe-ci.org
https://beta.jupyter.tacc.cloud/
https://research.google.com/colaboratory/
https://mybinder.org/

Developing Fundamental AI Programming Skills for Drug Discovery

2.4 Interacting with Jupyter Notebooks

First, choose one of the methods above and start a new Jupyter Notebook. I will be following method #2 - the TACC
Analysis Portal. For this workshop, use the following settings:

The original, and more common “tree” interface to Jupyter will display a file browser (in this case to files in your
Longhorn /home directory):

New Python3 kernels and Terminals can be launched by clicking the “New” button on the right side:

12 Chapter 2. Jupyter Notebooks

Developing Fundamental AI Programming Skills for Drug Discovery

Running kernels can be accessed through the “Running” tab on the top. By default, the Jupyter Notebooks will be
saved in your /home directory with a .ipynb extension. (Re-opening the notebook will open all the cells, and restore
the state of the kernel - more on this later):

The terminal is a standard, fully-functional terminal. Very useful for debugging and interacting with files / directories.
For example, you can easily wget a data set or unzip a file:

The Jupyter notebook consists of a toolbar (top) and an unlimited number of cells (bottom):

2.4. Interacting with Jupyter Notebooks 13

Developing Fundamental AI Programming Skills for Drug Discovery

Cells can be either “code cells” or “markdown cells”. Code cells allow you to enter and run code. Markdown cells use
the markdown markup language to comment on or narrate what is happening in the notebook:

2.5 Miscellaneous Tips and Tricks

Shortcuts:

• Shift+Enter: run cell

• Ctrl+Enter: run cell in place

• Alt+Enter: run cell, insert below

• Esc / Enter: toggle between command and edit mode

Run a command within a Jupyter notebook (prefix with !):

In[]: ! pip list
In[]: ! pip install --user names

14 Chapter 2. Jupyter Notebooks

Developing Fundamental AI Programming Skills for Drug Discovery

The file browser is not (by default) aware of your /work or /scratch directories on Longhorn. The easiest thing to do is
open up a terminal and make symbolic links to your /work and /scratch directories in your /home directory

[longhorn]$ cd
[longhorn]$ pwd
/home/012345/username
[longhorn]$ ln -s $WORK WORK
[longhorn]$ ln -s $SCRATCH SCRATCH

2.6 Exercise

Make a copy of a previously-prepared demo notebook in your /home directory. Open the notebook with Jupyter.
Execute the cells within and think about why it is organized the way it is. To copy the notebook:

[longhorn]$ cd # cd to /home directory
[longhorn]$ cp /scratch/03439/wallen/AI-Drug-Discovery/notebook_demo.ipynb .

Once you run each cell, save the notebook with a new name. Re-open the original notebook as well as the new
notebook. Does saving the notebook save the state of the kernel as well?

2.6. Exercise 15

Developing Fundamental AI Programming Skills for Drug Discovery

16 Chapter 2. Jupyter Notebooks

CHAPTER

THREE

LINUX REFRESHER

After working through this material, attendees should be able to:

• Describe basic functions of essential Linux commands

• Use Linux commands to navigate a file system and manipulate files

• Transfer data to / from a remote Linux file system

• Edit files directly on a Linux system using a command line utility (e.g. vim, nano, emacs)

Topics covered in this module include:

• Creating and navigating folders (pwd, ls, mkdir, cd, rmdir)

• Creating and manipulating files (touch, rm, mv, cp)

• Looking at the contents of files (cat, more, less, head, tail, grep)

• Network and file transfers (hostname, whoami, logout, ssh, scp, rsync)

• Text editing with vim (insert mode, normal mode, navigating, saving, quitting)

3.1 Log in to Longhorn

To log in to the Longhorn cluster, follow the instructions for your operating system or ssh client below.

Mac / Linux

Open the application 'Terminal'
ssh username@longhorn.tacc.utexas.edu
(enter password)
(enter 6-digit token)

Windows

Open the application 'PuTTY'
enter Host Name: longhorn.tacc.utexas.edu
(click 'Open')
(enter username)
(enter password)
(enter 6-digit token)

If you can’t access Longhorn yet, a local or web-based Linux environment will work for this guide. However, you will
need to access Longhorn for future materials.

Try this Linux environment in a browser.

17

https://portal.tacc.utexas.edu/user-guides/longhorn
https://bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192

Developing Fundamental AI Programming Skills for Drug Discovery

3.2 Creating and Navigating Folders

On a Windows or Mac desktop, our present location determines what files and folders we can access. I can “see” my
present location visually with the help of the graphic interface - I could be looking at my Desktop, or the contents of
a folder, for example. In a Linux command-line interface, we lack the same visual queues to tell us what our location
is. Instead, we use a command - pwd (print working directory) - to tell us our present location. Try executing this
command in the terminal:

$ pwd
/home/03439/wallen

This home location on the Linux filesystem is unique for each user, and it is roughly analogous to C:\Users\username
on Windows, or /Users/username on Mac.

To see what files and folders are available at this location, use the ls (list) command:

$ ls

I have no files or folders in my home directory yet, so I do not get a response. We can create some folders using the
mkdir (make directory) command. The words ‘folder’ and ‘directory’ are interchangeable:

$ mkdir folder1
$ mkdir folder2
$ mkdir folder3

$ ls
folder1 folder2 folder3

Now we have some folders to work with. To “open” a folder, navigate into that folder using the cd (change directory)
command. This process is analogous to double-clicking a folder on Windows or Mac:

$ pwd
/home/03439/wallen/
$ cd folder1
$ pwd
/home/03439/wallen/folder1

Now that we are inside folder1, make a few sub-folders:

$ mkdir subfolderA
$ mkdir subfolderB
$ mkdir subfolderC
$ ls
subfolderA subfolderB subfolderC

Use cd to Navigate into subfolderA, then use ls to list the contents. What do you expect to see?

$ cd subfolderA
$ pwd
/home/03439/wallen/folder1/subfolderA
$ ls

There is nothing there because we have not made anything yet. Next, we will navigate back to the home directory. So
far we have seen how to navigate “down” into folders, but how do we navigate back “up” to the parent folder? There
are different ways to do it. For example, we could specify the complete path of where we want to go:

18 Chapter 3. Linux Refresher

Developing Fundamental AI Programming Skills for Drug Discovery

$ pwd
/home/03439/wallen/folder1/subfolderA
$ cd /home/03439/wallen/folder1
$ pwd
/home/03439/wallen/folder1/

Or, we could use a shortcut, .., which refers to the parent folder - one level higher than the present location:

$ pwd
/home/03439/wallen/folder1
$ cd ..
$ pwd
/home/03439/wallen

We are back in our home directory. Finally, use the rmdir (remove directory) command to remove folders. This will
not work on folders that have any contents (more on this later):

$ mkdir junkfolder
$ ls
folder1 folder2 folder3 junkfolder
$ rmdir junkfolder
$ ls
folder1 folder2 folder3

Before we move on, let’s remove the directories we have made, using rm -r to remove our parent folder folder1
and its subfolders. The -r command line option recursively removes subfolders and files located “down” the parent
directory. -r is required for non-empty folders.

$ rm -r folder1
$ ls
folder2 folder3

Which command should we use to remove folder2 and folder3?

$ rmdir folder2
$ rmdir folder3
$ ls

3.3 Creating and Manipulating Files

We have seen how to navigate around the filesystem and perform operations with folders. But, what about files? Just
like on Windows or Mac, we can easily create new files, copy files, rename files, and move files to different locations.
First, we will navigate to the home directory and create a few new folders and files with the mkdir and touch
commands:

$ cd # cd on an empty line will automatically take you back to the home directory
$ pwd
/home/03439/wallen
$ mkdir folder1
$ mkdir folder2
$ mkdir folder3
$ touch file_a
$ touch file_b
$ touch file_c

(continues on next page)

3.3. Creating and Manipulating Files 19

Developing Fundamental AI Programming Skills for Drug Discovery

(continued from previous page)

$ ls
file_a file_b file_c folder1 folder2 folder3

These files we have created are all empty. Removing a file is done with the rm (remove) command. Please note that
on Linux file systems, there is no “Recycle Bin”. Any file or folder removed is gone forever and often un-recoverable:

$ touch junkfile
$ rm junkfile

Moving files with the mv command and copying files with the cp command works similarly to how you would expect
on a Windows or Mac machine. The context around the move or copy operation determines what the result will be.
For example, we could move and/or copy files into folders:

$ mv file_a folder1/
$ mv file_b folder2/
$ cp file_c folder3/

Before listing the results with ls, try to guess what the result will be.

$ ls
file_c folder1 folder2 folder3
$ ls folder1
file_a
$ ls folder2
file_b
$ ls folder3
file_c

Two files have been moved into folders, and file_c has been copied - so there is still a copy of file_c in the home
directory. Move and copy commands can also be used to change the name of a file:

$ cp file_c file_c_copy
$ mv file_c file_c_new_name

By now, you may have found that Linux is very unforgiving with typos. Generous use of the <Tab> key to auto-
complete file and folder names, as well as the <UpArrow> to cycle back through command history, will greatly
improve the experience. As a general rule, try not to use spaces or strange characters in files or folder names. Stick to:

A-Z # capital letters
a-z # lowercase letters
0-9 # digits
- # hyphen
_ # underscore
. # period

Before we move on, let’s clean up once again by removing the files and folders we have created. Do you remember
the command for removing non-empty folders?

$ rm -r folder1
$ rm -r folder2
$ rm -r folder3

How do we remove file_c_copy and file_c_new_name?

$ rm file_c_copy
$ rm file_c_new_name

20 Chapter 3. Linux Refresher

Developing Fundamental AI Programming Skills for Drug Discovery

3.4 Looking at the Contents of Files

Everything we have seen so far has been with empty files and folders. We will now start looking at some real data.
Navigate to your home directory, then issue the following cp command to copy a public file on the server to your local
space:

$ cd ~ # the tilde ~ is also a shortcut referring to your home directory
$ pwd
/home/03439/wallen
$ cp /usr/share/dict/words .
$ ls
words

Try to use <Tab> to autocomplete the name of the file. Also, please notice the single dot . at the end of the copy
command, which indicates that you want to cp the file to ., this present location (your home directory).

This words file is a standard file that can be found on most Linux operating systems. It contains 479,828 words, each
word on its own line. To see the contents of a file, use the cat command to print it to screen:

$ cat words
1080
10-point
10th
11-point
12-point
16-point
18-point
1st
2
20-point

This is a long file! Printing everything to screen is much too fast and not very useful. We can use a few other commands
to look at the contents of the file with more control:

$ more words

Press the <Enter> key to scroll through line-by-line, or the <Space> key to scroll through page-by-page. Press q
to quit the view, or <Ctrl+c> to force a quit if things freeze up. A % indicator at the bottom of the screen shows
your progress through the file. This is still a little bit messy and fills up the screen. The less command has the same
effect, but is a little bit cleaner:

$ less words

Scrolling through the data is the same, but now we can also search the data. Press the / forward slash key, and type
a word that you would like to search for. The screen will jump down to the first match of that word. The n key will
cycle through other matches, if they exist.

Finally, you can view just the beginning or the end of a file with the head and tail commands. For example:

$ head words
$ tail words

The > and >> shortcuts in Linux indicate that you would like to redirect the output of one of the commands above.
Instead of printing to screen, the output can be redirected into a file:

$ cat words > words_new.txt
$ head words > first_10_lines.txt

3.4. Looking at the Contents of Files 21

Developing Fundamental AI Programming Skills for Drug Discovery

A single greater than sign > will redirect and overwrite any contents in the target file. A double greater than sign >>
will redirect and append any output to the end of the target file.

One final useful way to look at the contents of files is with the grep command. grep searches a file for a specific
pattern, and returns all lines that match the pattern. For example:

$ grep "banana" words
banana
bananaquit
bananas
cassabanana

Although it is not always necessary, it is safe to put the search term in quotes.

3.5 Network and File Transfers

In order to login or transfer files to a remote Linux file system, you must know the hostname (unique network identifier)
and the username. If you are already on a Linux file system, those are easy to determine using the following commands:

$ whoami
wallen
$ hostname -f
login1.longhorn.tacc.utexas.edu

Given that information, a user would remotely login to this Linux machine using ssh in a Terminal:

[local]$ ssh wallen@longhorn.tacc.utexas.edu
enter password
enter 6-digit token
[longhorn]$

Windows users would typically use the program PuTTY (or another SSH client) to perform this operation. Logging
out of a remote system is done using the logout command, or the shortcut <Ctrl+d>:

[longhorn]$ logout
[local]$

Copying files from your local computer to your home folder on Longhorn would require the scp command (Windows
users use a client “WinSCP”):

[local]$ scp my_file wallen@longhorn.tacc.utexas.edu:/home/03439/wallen/
enter password
enter 6-digit token

In this command, you specify the name of the file you want to transfer (my_file), the username (wallen), the
hostname (longhorn.tacc.utexas.edu), and the path you want to put the file (/home/03439/wallen/).
Take careful notice of the separators including spaces, the @ symbol, and the :.

Copy files from Longhorn to your local computer using the following:

[local]$ scp wallen@longhorn.tacc.utexas.edu:/home/03439/wallen/my_file ./
enter password
enter 6-digit token

Instead of files, full directories can be copied using the “recursive” flag (scp -r ...). The rsync tool is an
advanced copy tool that is useful for synching data between two sites. Although we will not go into depth here,
example rsync usage is as follows:

22 Chapter 3. Linux Refresher

Developing Fundamental AI Programming Skills for Drug Discovery

$ rsync -azv local remote
$ rsync -azv remote local

This is just the basics of copying files. See example scp usage and example rsync usage for more info.

3.6 Text Editing with VIM

VIM is a text editor used on Linux file systems.

Open a file (or create a new file if it does not exist):

$ vim file_name

There are two “modes” in VIM that we will talk about today. They are called “insert mode” and “normal mode”. In
insert mode, the user is typing text into a file as seen through the terminal (think about typing text into TextEdit or
Notepad). In normal mode, the user can perform other functions like save, quit, cut and paste, find and replace, etc.
(think about clicking the menu options in TextEdit or Notepad). The two main keys to remember to toggle between
the modes are i and Esc.

Entering VIM insert mode:

> i

Entering VIM normal mode:

> Esc

A summary of the most important keys to know for normal mode are:

Navigating the file:

arrow keys move up, down, left, right
Ctrl+u page up
Ctrl+d page down

0 move to beginning of line
$ move to end of line

gg move to beginning of file
G move to end of file
:N move to line N

Saving and quitting:

:q quit editing the file
:q! quit editing the file without saving

:w save the file, continue editing
:wq save and quit

3.6. Text Editing with VIM 23

https://en.wikipedia.org/wiki/Secure_copy
https://en.wikipedia.org/wiki/Rsync

Developing Fundamental AI Programming Skills for Drug Discovery

3.7 Review of Topics Covered

Part 1: Creating and navigating folders

Command Effect
pwd print working directory
ls list files and directories
ls -l list files in column format
mkdir dir_name/ make a new directory
cd dir_name/ navigate into a directory
rmdir dir_name/ remove an empty directory
rm -r dir_name/ remove a directory and its contents
. or ./ refers to the present location
.. or ../ refers to the parent directory

Part 2: Creating and manipulating files

Command Effect
touch file_name create a new file
rm file_name remove a file
rm -r dir_name/ remove a directory and its contents
mv file_name dir_name/ move a file into a directory
mv old_file new_file change the name of a file
mv old_dir/ new_dir/ change the name of a directory
cp old_file new_file copy a file
cp -r old_dir/ new_dir/ copy a directory
<Tab> autocomplete file or folder names
<UpArrow> cycle through command history

Part 3: Looking at the contents of files

Command Effect
cat file_name print file contents to screen
cat file_name >> new_file redirect output to new file
more file_name scroll through file contents
less file_name scroll through file contents
head file_name output beginning of file
tail file_name output end of a file
grep pattern file_name search for ‘pattern’ in a file
~/ shortcut for home directory
<Ctrl+c> force interrupt
> redirect and overwrite
>> redirect and append

Part 4: Network and file transfers

24 Chapter 3. Linux Refresher

Developing Fundamental AI Programming Skills for Drug Discovery

Command Effect
hostname -f print hostname
whoami print username
ssh username@hostname remote login
logout logout
scp local remote copy a file from local to remote
scp remote local copy a file from remote to local
rsync -azv local remote sync files between local and remote
rsync -azv remote local sync files between remote and local
<Ctrl+d> logout of host

Part 5: Text editing with VIM

Command Effect
vim file.txt open “file.txt” and edit with vim
i toggle to insert mode
<Esc> toggle to normal mode
<arrow keys> navigate the file
:q quit ending the file
:q! quit editing the file without saving
:w save the file, continue editing
:wq save and quit

3.8 Additional Resources

• Practice Linux commands safely in a web-based emulator

• This is a good summary of the important commands you need to know

• Practice VIM in a web browser

• Practice VIM on the command line by typing vimtutor

3.8. Additional Resources 25

https://bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192
https://linuxjourney.com/lesson/the-shell
http://openvim.com/

Developing Fundamental AI Programming Skills for Drug Discovery

26 Chapter 3. Linux Refresher

CHAPTER

FOUR

PYTHON ESSENTIALS

After working through this material, attendees should be able to:

• Write and execute Python code on a remote server

• Use variables, lists, and dictionaries in Python

• Write conditionals using a variety of comparison operators

• Write useful while and for loops

• Arrange code into clean, well organized functions

• Read input from and write output to a file

• Import and use standard and non-standard Python libraries

Topics covered in this module include:

• Data types and variables (ints, floats, bools, strings, type(), print())

• Arithmetic operations (+, -, *, /, **, %, //)

• Lists and dictionaries (creating, interpreting, appending)

• Conditionals and control loops (comparison operators, if/elif/else, while, for, break, continue, pass)

• Functions (defining, passing arguments, returning values)

• File handling (open, with, read(), readline(), strip(), write())

• Importing libraries (import, random, names, pip)

4.1 Log in to Longhorn

To log in to longhorn.tacc.utexas.edu, follow the instructions for your operating system or ssh client below.

Mac / Linux

Open the application 'Terminal'
ssh username@longhorn.tacc.utexas.edu
(enter password)
(enter 6-digit token)

Windows

27

Developing Fundamental AI Programming Skills for Drug Discovery

Open the application 'PuTTY'
enter Host Name: longhorn.tacc.utexas.edu
(click 'Open')
(enter username)
(enter password)
(enter 6-digit token)

If you can’t access Longhorn yet, a local or web-based Python 3 environment will work for this guide. However, you
will need to access Longhorn for future materials.

Try this Python 3 environment in a browser.

Note: For the first few sections below, we will be using the Python interpreter in interactive mode to try out different
things. Later on when we get to more complex code, we will be saving the code in files (scripts) and invoking the
interpreter non-interactively.

4.2 Data Types and Variables

Start up the interactive Python interpreter:

[longhorn]$ python3
Python 3.6.8 (default, Apr 25 2019, 20:47:23)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Tip: To exit the interpreter, type quit().

The most common data types in Python are similar to other programming languages. For this workshop, we probably
only need to worry about integers, floats, booleans, and strings.

Assign some values to variables by doing the following:

>>> my_int = 5
>>> my_float = 5.0
>>> my_bool = True # or False, notice capital letters
>>> my_string = 'Hello, world!'

In Python, you don’t have to declare type. Python figures out the type automatically. Check using the type()
function:

>>> type(my_int)
<class 'int'>
>>> type(my_float)
<class 'float'>
>>> type(my_bool)
<class 'bool'>
>>> type(my_string)
<class 'str'>

Print the values of each variable using the print() function:

28 Chapter 4. Python Essentials

https://www.katacoda.com/scenario-examples/courses/environment-usages/python

Developing Fundamental AI Programming Skills for Drug Discovery

>> print(my_int)
5
>> print('my_int')
my_int

(Try printing the others as well). And, notice what happens when we print with and without single quotes? What is
the difference between my_int and 'my_int'?

You can convert between types using a few different functions. For example, when you read in data from a file,
numbers are often read as strings. Thus, you may want to convert the string to integer or float as appropriate:

>>> str(my_int) # convert int to string
>>> str(my_float) # convert float to string
>>> int(my_string) # convert string to int
>>> float(my_string) # convert string to float
>>>
>>> value = 5
>>> print(value)
5
>>> type(value)
<class 'int'>
>>> new_value = str(value)
>>> print(new_value)
'5'
>>> type(new_value)
<class 'str'>

4.3 Arithmetic Operations

Next, we will look at some basic arithmetic. You are probably familiar with the standard operations from other
languages:

Operator Function Example Result
+ Addition 1+1 2
- Subtraction 9-5 4

* Multiplication 2*2 4
/ Division 8/4 2

** Exponentiation 3**2 9
% Modulus 5%2 1
// Floor division 5//2 2

Try a few things to see how they work:

>>> print(2+2)
>>> print(355/113)
>>> print(10%9)
>>> print(3+5*2)
>>> print('hello' + 'world')
>>> print('some' + 1)
>>> print('number' * 5)

Also, carefully consider how arithmetic options may affect type:

>>> number1 = 5.0/2
>>> type(number1)

(continues on next page)

4.3. Arithmetic Operations 29

Developing Fundamental AI Programming Skills for Drug Discovery

(continued from previous page)

<class 'float'>
>>> print(number1)
2.5
>>> number2 = 5/2
>>> type(number2)
<class 'float'>
>>> print(number2)
2.5
>>> print(int(number2))
2

4.4 Lists and Dictionaries

Lists are a data structure in Python that can contain multiple elements. They are ordered, they can contain duplicate
values, and they can be modified. Declare a list with square brackets as follows:

>>> my_shape_list = ['circle', 'triangle', 'square', 'diamond']
>>> type(my_shape_list)
<class 'list'>
>>> print(my_shape_list)
['circle', 'triangle', 'square', 'diamond']

Access individual list elements:

>>> print(my_shape_list[0])
circle
>>> type(my_shape_list[0])
<class 'str'>
>>> print(my_shape_list[2])
square

Create an empty list and add things to it:

>>> my_number_list = []
>>> my_number_list.append(5) # 'append()' is a method of the list class
>>> my_number_list.append(6)
>>> my_number_list.append(2)
>>> my_number_list.append(2**2)
>>> print(my_number_list)
[5, 6, 2, 4]
>>> type(my_number_list)
<class 'list'>
>>> type(my_number_list[1])
<class 'int'>

Lists are not restricted to containing one data type. Combine the lists together to demonstrate:

>>> my_big_list = my_shape_list + my_number_list
>>> print(my_big_list)
['circle', 'triangle', 'square', 'diamond', 5, 6, 2, 4]

Another way to access the contents of lists is by slicing. Slicing supports a start index, stop index, and step taking
the form: mylist[start:stop:step]. Only the first colon is required. If you omit the start, stop, or :step, it is
assumed you mean the beginning, end, and a step of 1, respectively. Here are some examples of slicing:

30 Chapter 4. Python Essentials

Developing Fundamental AI Programming Skills for Drug Discovery

>>> mylist = ['thing1', 'thing2', 'thing3', 'thing4', 'thing5']
>>> print(mylist[0:2]) # returns the first two things
['thing1', 'thing2']
>>> print(mylist[:2]) # if you omit the start index, it assumes the beginning
['thing1', 'thing2']
>>> print(mylist[-2:]) # returns the last two things (omit the stop index and it
→˓assumes the end)
['thing4', 'thing5']
>>> print(mylist[:]) # returns the entire list
['thing1', 'thing2', 'thing3', 'thing4', 'thing5']
>>> print(mylist[::2]) # return every other thing (step = 2)
['thing1', 'thing3', 'thing5']

Note: If you slice from a list, it returns an object of type list. If you access a list element by its index, it returns an
object of whatever type that element is. The choice of whether to slice from a list, or iterate over a list by index, will
depend on what you want to do with the data.

Dictionaries are another data structure in Python that contain key:value pairs. They are always unordered, they cannot
contain duplicate keys, and they can be modified. Create a new dictionary using curly brackets:

>>> my_shape_dict = {
... 'most_favorite': 'square',
... 'least_favorite': 'circle',
... 'pointiest': 'triangle',
... 'roundest': 'circle'
... }
>>> type(my_shape_dict)
<class 'dict'>
>>> print(my_shape_dict)
{'most_favorite': 'square', 'least_favorite': 'circle', 'pointiest': 'triangle',
→˓'roundest': 'circle'}
>>> print(my_shape_dict['most_favorite'])
square

As your preferences change over time, so to can values stored in dictionaries:

>>> my_shape_dict['most_favorite'] = 'rectangle'
>>> print(my_shape_dict['most_favorite'])
rectangle

Add new key:value pairs to the dictionary as follows:

>>> my_shape_dict['funniest'] = 'squircle'
>>> print(my_shape_dict['funniest'])
squircle

Many other methods exist to access, manipulate, interpolate, copy, etc., lists and dictionaries. We will learn more
about them out as we encounter them later in this course.

4.4. Lists and Dictionaries 31

Developing Fundamental AI Programming Skills for Drug Discovery

4.5 Conditionals and Control Loops

Python comparison operators allow you to add conditions into your code in the form of if / elif / else statements.
Valid comparison operators include:

Operator Comparison Example Result
== Equal 1==2 False
!= Not equal 1!=2 True
> Greater than 1>2 False
< Less than 1<2 True
>= Greater than or equal to 1>=2 False
<= Less Than or equal to 1<=2 True

A valid conditional statement might look like:

>>> num1 = 10
>>> num2 = 20
>>>
>>> if (num1 > num2): # notice the colon
... print('num1 is larger') # notice the indent
... elif (num2 > num1):
... print('num2 is larger')
... else:
... print('num1 and num2 are equal')

In addition, conditional statements can be combined with logical operators. Valid logical operators include:

Operator Description Example
and Returns True if both are True a < b and c < d
or Returns True if at least one is True a < b or c < d
not Negate the result not(a < b)

For example, consider the following code:

>>> num1 = 10
>>> num2 = 20
>>>
>>> if (num1 < 100 and num2 < 100):
... print('both are less than 100')
... else:
... print('at least one of them is not less than 100')

While loops also execute according to conditionals. They will continue to execute as long as a condition is True. For
example:

>>> i = 0
>>>
>>> while (i < 10):
... print(f'i = {i}') # literal string interpolation
... i = i + 1

The break statement can also be used to escape loops:

>>> i = 0
>>>
>>> while (i < 10):
... print(f'i = {i}')

(continues on next page)

32 Chapter 4. Python Essentials

Developing Fundamental AI Programming Skills for Drug Discovery

(continued from previous page)

... i = i + 1

... if (i==5):

... break

... else:

... continue

For loops in Python are useful when you need to execute the same set of instructions over and over again. They are
especially great for iterating over lists:

>>> my_shape_list = ['circle', 'triangle', 'square', 'diamond']
>>>
>>> for shape in my_shape_list:
... print(shape)
>>>
>>> for shape in my_shape_list:
... if (shape == 'circle'):
... pass # do nothing
... else:
... print(shape)

You can also use the range() function to iterate over a range of numbers:

>>> for x in range(10):
... print(x)
>>>
>>> for x in range(10, 100, 5):
... print(x)
>>>
>>> for a in range(3):
... for b in range(3):
... for c in range(3):
... print(f'{a} + {b} + {c} = {a+b+c}')

Note: The code is getting a little bit more complicated now. It will be better to stop running in the interpreter’s
interactive mode, and start writing our code in Python scripts.

4.6 Functions

Functions are blocks of codes that are run only when we call them. We can pass data into functions, and have functions
return data to us. Functions are absolutely essential to keeping code clean and organized.

On the command line, use a text editor to start writing a Python script:

[longhorn]$ vim function_test.py

Enter the following text into the script:

1 def hello_world():
2 print('Hello, world!')
3

4 hello_world()

4.6. Functions 33

Developing Fundamental AI Programming Skills for Drug Discovery

After saving and quiting the file, execute the script (Python code is not compiled - just run the raw script with the
python3 executable):

[longhorn]$ python3 function_test.py
Hello, world!

Note: Future examples from this point on will assume familiarity with using the text editor and executing the script.
We will just be showing the contents of the script and console output.

More advanced functions can take parameters and return results:

1 def add5(value):
2 return(value + 5)
3

4 final_number = add5(10)
5 print(final_number)

15

Pass multiple parameters to a function:

1 def add5_after_multiplying(value1, value2):
2 return((value1 * value2) + 5)
3

4 final_number = add5_after_multiplying(10, 2)
5 print(final_number)

25

It is a good idea to put your list operations into a function in case you plan to iterate over multiple lists:

1 def print_ts(mylist):
2 for x in mylist:
3 if (x[0] == 't'): # a string (x) can be interpreted as a list of chars!
4 print(x)
5

6 list1 = ['circle', 'triangle', 'square', 'diamond']
7 list2 = ['one', 'two', 'three', 'four']
8

9 print_ts(list1)
10 print_ts(list2)

triangle
two
three

There are many more ways to call functions, including handing an arbitrary number of arguments, passing keyword /
unordered arguments, assigning default values to arguments, and more.

34 Chapter 4. Python Essentials

Developing Fundamental AI Programming Skills for Drug Discovery

4.7 File Handling

The open() function does all of the file handling in Python. It takes two arguments - the filename and the mode. The
possible modes are read (r), write (w), append (a), or create (x).

For example, to read a file do the following:

1 with open('/usr/share/dict/words', 'r') as f:
2 for x in range(5):
3 print(f.readline())

1080

10-point

10th

11-point

12-point

Tip: By opening the file with the with statement above, you get built in exception handling, and it automatically
will close the file handle for you. It is generally recommended as the best practice for file handling.

You may have noticed in the above that there seems to be an extra space between each word. What is actually
happening is that the file being read has newline characters on the end of each line (\n). When read into the Python
script, the original new line is being printed, followed by another newline added by the print() function. Stripping
the newline character from the original string is the easiest way to solve this problem:

1 with open('/usr/share/dict/words', 'r') as f:
2 for x in range(5):
3 print(f.readline().strip('\n'))

1080
10-point
10th
11-point
12-point

Read the whole file and store it as a list:

1 words = []
2

3 with open('/usr/share/dict/words', 'r') as f:
4 words = f.read().splitlines() # careful of memory usage
5

6 for x in range(5):
7 print(words[x])

1080
10-point
10th
11-point
12-point

4.7. File Handling 35

Developing Fundamental AI Programming Skills for Drug Discovery

Write output to a new file on the file system; make sure you are attempting to write somwhere where you have
permissions to write:

1 my_shapes = ['circle', 'triangle', 'square', 'diamond']
2

3 with open('my_shapes.txt', 'w') as f:
4 for shape in my_shapes:
5 f.write(shape)

(in my_shapes.txt)
circletrianglesquarediamond

You may notice the output file is lacking in newlines this time. Try adding newline characters to your output:

1 my_shapes = ['circle', 'triangle', 'square', 'diamond']
2

3 with open('my_shapes.txt', 'w') as f:
4 for shape in my_shapes:
5 f.write(f'{shape}\n')

(in my_shapes.txt)
circle
triangle
square
diamond

Now notice that the original line in the output file is gone - it has been overwritten. Be careful if you are using write
(w) vs. append (a).

4.8 Importing Libraries

The Python built-in functions, some of which we have seen above, are useful but limited. Part of what makes Python
so powerful is the huge number and variety of libraries that can be imported. For example, if you want to work with
random numbers, you have to import the ‘random’ library into your code, which has a method for generating random
numbers called ‘random’.

1 import random
2

3 for i in range(5):
4 print(random.random())

0.47115888799541383
0.5202615354150987
0.8892412583071456
0.7467080997595558
0.025668541754695906

More information about using the random library can be found in the Python docs

Some libraries that you might want to use are not included in the official Python distribution - called the Python
Standard Library. Libraries written by the user community can often be found on PyPI.org and downloaded to your
local environment using a tool called pip3.

For example, if you wanted to download the names library and use it in your Python code, you would do the following:

36 Chapter 4. Python Essentials

https://docs.python.org/3.6/library/random.html
https://pypi.org/
https://pypi.org/project/names/

Developing Fundamental AI Programming Skills for Drug Discovery

[longhorn]$ pip3 install --user names
Collecting names

Downloading https://files.pythonhosted.org/packages/44/4e/
→˓f9cb7ef2df0250f4ba3334fbdabaa94f9c88097089763d8e85ada8092f84/names-0.3.0.tar.gz
→˓(789kB)

100% || 798kB 1.1MB/s
Installing collected packages: names

Running setup.py install for names ... done
Successfully installed names-0.3.0

Notice the library is installed above with the --user flag. Longhorn is a shared system and non-privileged users can
not download or install packages in root locations. The --user flag instructs pip3 to install the library in your own
home directory.

1 import names
2

3 for i in range(5):
4 print(names.get_full_name())

Johnny Campbell
Lawrence Webb
Johnathan Holmes
Mary Wang
Jonathan Henry

4.9 Exercises

Test your understanding of the materials above by attempting the following exercises.

• Create a list of ~10 different integers. Write a function (using modulus and conditionals) to determine if each
integer is even or odd. Print to screen each digit followed by the word ‘even’ or ‘odd’ as appropriate.

• Using nested for loops and if statements, write a program that iterates over every integer from 3 to 100 (inclusive)
and prints out the number only if it is a prime number.

• Create three lists containing 10 integers each. The first list should contain all the integers sequentially from 1 to
10 (inclusive). The second list should contain the squares of each element in the first list. The third list should
contain the cubes of each element in the first list. Print all three lists side-by-side in three columns. E.g. the first
row should contain 1, 1, 1 and the second row should contain 2, 4, 8.

• Write a script to read in /usr/share/dict/words and print just the last 10 lines of the file. Write another script to
only print words beginning with the letters “pyt”.

4.10 Additional Resources

• The Python Standard Library

• PEP 8 Python Style Guide

• Python3 environment in a browser

• Jupyter Notebooks in a browser

4.9. Exercises 37

https://docs.python.org/3/library/
https://www.python.org/dev/peps/pep-0008/
https://www.katacoda.com/scenario-examples/courses/environment-usages/python
https://jupyter.org/try

Developing Fundamental AI Programming Skills for Drug Discovery

38 Chapter 4. Python Essentials

CHAPTER

FIVE

NUMPY, SCIPY, AND MATPLOTLIB PRIMER

NumPy, SciPy, and Matplotlib are three complementary and important Python libraries that are useful for exploratory
data analysis and machine learning. This primer is a high-level introduction to each library, providing short examples
for each.

5.1 NumPy

NumPy provides a multidimensional array object for very fast operations on numerical data (e.g. arithmetic, logical,
sorting, selecting, transforming, statistical, etc.).

Much faster than doing similar operations with normal Python data types because it uses pre-complied, vectorized C
code behind the scenes.

1 import numpy as np
2

3 a = np.arange(15).reshape(3, 5)
4

5 print(a)
6 print(a.shape)
7 print(a.ndim)

Output:

[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]]

(3, 5)
2

A few very easy array operation examples:

1 import numpy as np
2

3 a = np.arange(15).reshape(3, 5)
4

5 print(a.max())
6 print(a.min())
7 print(a.sum())
8 print(a*2)

Output:

(continues on next page)

39

Developing Fundamental AI Programming Skills for Drug Discovery

(continued from previous page)

14
0
105
[[0 2 4 6 8]
[10 12 14 16 18]
[20 22 24 26 28]]

5.2 SciPy

SciPy provides mathematical algorithms and convenience functions for working with NumPy arrays.

It comes with a host of high level commands for different scientific computing domains, including clustering, Fourier
transforms, integration, interpolation, linear algebra, signal processing, among others.

The following short code block defines a function to be integrated (called the “integrand”) as f(x) = ax^2 + b.
The SciPy quad function evaluates the integral over a given range, in this case from 0 to 1. The output is a tuple
where the first item is the value of the integral, and the second item is the estimated error.

1 from scipy.integrate import quad
2 def integrand(x, a, b):
3 return a*x**2 + b
4

5 a = 2
6 b = 1
7 I = quad(integrand, 0, 1, args=(a,b))
8 print(I)

Output:

(1.6666666666666667, 1.8503717077085944e-14)

5.3 Matplotlib

Matplotlib provides utilities for creating static, animated, and interactive visualizations of data.

You can use it to create many different types of plots (line, histogram, scatter, countour, 3D, etc.) with full control
over all labels, colors, styles, etc. Look online for examples of the kind of plot you want to make, and undoubtedly
there will be some Matplotlib samples available.

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 x = np.linspace(0, 2*np.pi, 50)
5 plt.plot(x, np.sin(x))
6 plt.show()

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 x = np.linspace(0, 2*np.pi, 50)
5 plt.plot(x, np.sin(x), 'r-o', x, np.sin(2*x), 'g--')
6 plt.show()

40 Chapter 5. NumPy, SciPy, and Matplotlib Primer

Developing Fundamental AI Programming Skills for Drug Discovery

1 # save the image to file instead
2 plt.savefig('my_sinwave.png')

5.4 Additional Resources

• NumPy Docs

• SciPy Docs

• Matplotlib Docs

5.4. Additional Resources 41

https://numpy.org/doc/stable/
https://scipy.github.io/devdocs/index.html
https://matplotlib.org/stable/users/index

Developing Fundamental AI Programming Skills for Drug Discovery

42 Chapter 5. NumPy, SciPy, and Matplotlib Primer

CHAPTER

SIX

ADDITIONAL RESOURCES

• Python for Machine Learning: https://learn.tacc.utexas.edu/mod/page/view.php?id=62

• AI for Everyone: https://www.coursera.org/learn/ai-for-everyone/home/welcome

43

https://learn.tacc.utexas.edu/mod/page/view.php?id=62
https://www.coursera.org/learn/ai-for-everyone/home/welcome

	Onboarding to TACC
	Jupyter Notebooks
	Linux Refresher
	Python Essentials
	NumPy, SciPy, and Matplotlib Primer
	Additional Resources

